Undetected error probabilities of binary primitive BCH codes for both error correction and detection

نویسندگان

  • Min-Goo Kim
  • Jae Hong Lee
چکیده

In this paper, we investigate the undetected error probabilities for bounded-distance decoding of binary primitive BCH codes when they are used for both error correction and detection on a binary symmetric channel. We show that the undetected error probability of binary linear codes can be quite simplified and quantified if weight distribution of the code is binomial-like. We obtain bounds on the undetected error probability of binary primitive BCH codes by applying the result to the code and show that bounds are quantified by the deviation factor of true weight distribution from the binomial-like weight distribution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Concerning a Bound on Undetected Error Probability

In the past, it has generally been assumed that the prohability of undetected error for an (n,k) block code, used solely for error detection on a binary symmetric channel, is upperbounded by 2-‘“-k’. In this correspondence, it is shown that Hamming codes do indeed obey this bound, but that the bound is violated by some more general codes. Examples of linear, cyclic, and Bose-Chaudhuri-Hocquengh...

متن کامل

Quantum Bch Codes

After a brief introduction to both quantum computation and quantum error correction, we show how to construct quantum error-correcting codes based on classical BCH codes. With these codes, decoding can exploit additional information about the position of errors. This error model—the quantum erasure channel—is discussed. Finally, parameters of quantum BCH codes are provided.

متن کامل

A triple-error-correcting cyclic code from the Gold and Kasami-Welch APN power functions

Based on a sufficient condition proposed by Hollmann and Xiang forconstructing triple-error-correcting codes, the minimum distance of a binary cycliccodeC1,3,13 with three zeros α, α3, and α13 of length 2−1 and the weight divisibilityof its dual code are studied, where m ≥ 5 is odd and α is a primitive element of thefinite field F2m . The codeC1,3,13 is proven to hav...

متن کامل

On Step-by-Step Complete Decoding Triple-Error-Correcting Binary BCH Codes

The decoding beyond the Bose-Chaudhuri-Hocquenghem (BCH) bound is always an interesting research topic in block error correction codes. However, searching a complete decoding algorithm is not easy since all the error patterns that belong to the coset leaders of the standard array need to be correctable [1]. Both the well-known standard algebraic method and the step-by-step method can be used to...

متن کامل

On the Dimension, Minimum Distance, and Duals of Primitive BCH Codes

We determine the dimension and in some cases the minimum distance of primitive, narrow sense BCH codes of length n with small designed distance. We show that such a code contains its Euclidean dual code and, when the size of the field is a perfect square, also its Hermitian dual code. We establish two series of quantum error-correcting codes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Communications

دوره 44  شماره 

صفحات  -

تاریخ انتشار 1996